2010
 Environmental Report

環境報告書

石油資諷閧等扬式会社

編集方針

石油資源開発株式会社「2010 環境報告書（Environmental Report）」 は，環境省の「環境報告ガイドライン（2007年版）」を参考にしています。

当社の環境取組み紹介
http：／／www．japex．co．jp／ecology／index．html

報告対象期間

2009年度（2009年4月1日～2010年3月31日）
ただし，一部には2009年3月31日以前，2010年4月1日以降の情報 が含まれています。

対象範囲

本報告書は，当社の主な環境取組みについて記載しています。
また，当社の子会社で，国内での石油•天然ガスの開発，生産，販売 を行っている日本海洋石油資源開発株式会社を報告対象範囲に加えて います。

発行年月

2010年11月

次回発行

2011年11月（予定）

表紙について

当社で初めて生産鉱場を設置した新潟県内には，現在も6力所の油ガス田があり，生産した石油•天然ガスは，パイプラインを主とする供給ネットワークを通じて，地元の都市ガスや産業用を中心に広く使用されています。
写真の左奥に雪を頂く山は，新潟県越後三山および日本百名山のひとつに数えられて いる越後駒ヶ岳（標高2，003m），写真の川は福島県との県境の奥只見湖に通じる北）又川で，どちらにも美しい自然が残り，シーズンには登山客や釣り客が多く集まります

石油•天然ガス開発企業としての環境保全と社会への貢献

弊社は，わが国における石油•天然ガス開発のリーディングカ ンパニーとして，長年，国内外で石油•天然ガスの探鉱開発に従事してまいりました。石油•天然がスのほとんどを輸入に依存す るわが国にとつて，エネルギーの安定供給は重要な課題でありま す。弊社はその重要な使命を担う企業として，エネルギーの安全 かつ安定的な供給，環境にやさしい天然ガスの普及拡大，そし て石油•天然ガス開発技術を応用した新たな環境技術開発を通 じて，環境保全と社会への貢献に努めてまいりました。
環境問題のうち地球温暖化問題は世界で最も重要な課題のひ とつであり，その主な原因とされる二酸化炭素の排出削減の取組みが，わが国を含めた各国で行われております。昨年12月に コペンハーゲンで開催された「第15回気候変動枠組条約締約国会議（COP15）」で，わが国はすべての主要排出国による公平か つ実効性のある国際的枠組みの構築および意欲的な目標の合意 を前提として，わが国の温室効果ガス排出量を2020年までに 1990年比で 25% 削減することを宣言しました。この会議では京都議定書の第一約束期間（2008～2012年）終了後の拘束力 のある枠組み作りについての合意には至らなかったものの，米国や中国を含む55力国から2020年までの温室効果ガス削減目標が示されたこともあり，今後の進展が注目されます。一方国内 においても，国内排出量取引制度や再生可能エネルギーの固定価格買取制度などの議論が進められております。

弊社は早くから地球温暖化問題を最も重要な課題のひとつと して捉え，その対策に積極的に取り組んでまいりました。国連気候変動に関する政府間パネル（IPCC）の報告書によると，天然ガ スへの燃料転換および二酸化炭素回収•貯留（CCS：Carbon Dioxide Capture and Storage）はエネルギー供給部門における地球温暖化対策の重要な鍵と位置付けられております。天然ガス への燃料転換は，弊社が長年天然ガスの生産•供給事業を通じ て普及に貢献してきたことであり，今後も天然ガスソースの安定確保や供給ネットワークの整備を通じて，なお一層その推進に努 めます。また，CCSは二酸化炭素排出削減の有効な手段として早期実用化が期待されている技術ですが，弊社は早くからその技術開発に取り組んでおり，特に二酸化炭素の輸送および地中貯留の分野では，弊社が培ってきた石油•天然ガス開発技術が応用できるため，その実用化に貢献できるものと確信しております。

また，弊社は石油鉱業連盟を通じ，経団連「地球温暖化対策環境自主行動計画」に参加し，温室効果ガスの排出抑制に努め ております。さらに，国が主導する試行排出量取引スキームへの参加や世界銀行のバイオ炭素基金への参加，および北海道，秋田県，新潟県における植林事業など，地球温暖化防止活動にさ まざまな形で積極的に参加しております。
地球温暖化対策以外にも，生産鉱場におけるBTX（ベンゼン・ トルエン・キシレン）やVOC（揮発性有機化合物）の排出削減に自主的に取り組んでいる他，クリーンオイルとしてのGTL（Gas－ To－Liquids），DME（Dimethyl Ether）の開発事業に参加するな ど，環境保全に貢献すべく努力しております。
弊社は環境保全以外の社会貢献にも力を入れております。教育研究や技術者育成の目的で国内4大学の大学院に寄付講座を設置しており，また，学生インターンや海外技術者の研修受入れ を通じて，将来を担う人材の育成に努めております。さらに，地震の被災地へ義援金を寄贈し，早期復興を支援するなど地域社会への貢献にも努めております。

弊社は本年4月，地球温暖化対策や環境関連事業の推進を目的として環境•新技術事業推進本部を設置し，環境への取組み をさらに強化する体制を整えました。今後とも世界に展開する工 ネルギー開発企業として，エネルギーの安定供給を使命としなが 5，弊社の持つ技術力や人材などの資源を最大限活用すること により，環境保全と社会への貢献になお一層努力してまいります ので，皆様のご指導，ご鞭撻をお願い申し上げます。

CONTENTS

石油•天然ガス開発企業としての 環境保全と社会への貢献 2
1 石油資源開発株式会社概要（2010年3月31日現在） 4
2 事業活動と環境負荷 5
3 環境に関する基本的な考え 7
4 地球温暖化対策 11
5 その他の環境負荷の低減 16
6 環境にやさしい事業•技術開発 19
7 社会とのかかわり 24
8 労働安全衛生 28
9 海外での環境保安への取組み 32
10 環境データ（2009年度） 35
11 第三者意見 37

石油資源開発株式会社概要石油資源開発株式会社概要（2010年3月31日晛在）

当社は，かけがえのない地球の環境に配慮しながら，人と暮らしに欠くことのできないエネルギーの安定供給を続けています。

資本金	142億8，869万4，000円
社員数	869名（臨時雇用者を除く当社の就業人員数）
主な事業内容	石油•天然ガスの探鉱，開発，販売
事業所	本社，技術研究所，北海道鉱業所，秋田鉱業所， 長岡鉱業所
事務所	仙台事務所，北京事務所，ジャカルタ事務所， ヒユーストン事務所，ロンドン事務所， ドバイ事務所
関連会社等	子会社26社，関連会社16社
2009年度業績（2010年3月期）	
当社売上高 131，082百万円 当社純利益 18，370百万円 連結売上高 179，752百万円 連結純利益 17,939 百万円 連結範囲 連結子会社22社 持分法適用関連会社12社	

事業活動と環境負荷

当社は創業以来，石油•天然ガスの「探鉱」，「開発•生産」，「輸送•販売」の一貫操業を行っています。事業内容および環境負荷は以下の通りです。

探鉱•据能

地質調査•物理探鉱

地下に眠る石油や天然ガスを探し出す作業は，地表調査 からはじまります。 調査対象地域における地質状況を調べ て地下構造を検討したり，地層の岩石サンプルなどを採取 し分析することにより，探鉱に重要な情報を得ます。

物理探鉱とは，地下の様子を物理的な手法を用いて調べ ることで，地表で人工的に振動を起こして，地下からの反射波を測定し，その測定データをコンピユ一タで処理，解析することにより，地下の地質構造を解明します。

これらの地表調査と物理探鉱により得られたデー夕など を総合的に解釈し，石油や天然ガスの賦存の可能性を検討 します。

バイブロサイス（物理探鉱用車両）による物理探鉱作業（リビア砂漠）

試掘•探掘

地質情報の解析結果を基に，有望と目されるエリアでの石油や天然ガスの賦存状況を調査するため，試掘井を掘削 します。その結果，石油や天然ガスを発見した場合，開発移行の可否を評価するために，試掘された地点の周辺部に数本の探掘井を掘削し，その油ガス層の広がりと形状や生産能力等を調査します。

探鉱•掘削段階における主な環境負荷は掘削作業にとも なうもので，

- 掘削機械運転のための燃料の消費
- 掘削泥水を作液することにともなう水資源の使用
- 掘削作業にともなう産業廃棄物（掘屑など）の発生等があります。

陸上掘削リグ（北海道）

岩船沖プラットフォーム（生産施設，新潟県）

生 産

開発•生産

試掘•探掘による技術検討に経済検討を加え，開発移行が決定され開発計画が作られます。開発では開発井を掘削し，また，石油と天然ガスの分離や貯蔵，輸送等の各施設を建設し，生産を行います。

生産段階における主な環境負荷には，
－石油•天然ガスの生産処理にともなう電気や燃料 の消費

- 石油•天然ガスの生産処理にともなう水資源の使用
- 天然ガス中に含まれる二酸化炭素の排出
- 石油および天然ガス中に含まれる揮発性有機化合物（VOC）の排出
－廃棄物等の排出
があります。

油ガス井

北海道鉱業所勇払プラント

輸送•供給
生産した石油は一度タンクに貯蔵した後，タンクロー リーやタンカーを使って出荷します。

天然ガスは，主にパイプラインを通じて供給する他， パイプラインネットワークから離れた地域へはタンク ローリー，鉄道を使って液化天然ガス（LNG）を供給し ています。

輸送段階における主な環境負荷には，
－道路工事等にともなうパイプライン移設時の天然 ガスの排出
－石油やLNG輸送のための燃料消費 があります。

新潟•仙台間ガスパイプラインガス管憍

LNGタンクコンテナ鉄道輸送（タンクコンテナを貨車に積載）

環境に関する基本的な考え

経営理念

新しいエネルギー価値創造への挑戦と企業価値の向上

－私たちは，石油•天然ガスの探鉱•開発•販売事業 を行う会社として，グローバルな事業活動を通じて， エネルギーの供給に貢献します。
－私たちは，優れた環境特性を有する天然ガスの新し い事業展開に挑戦することにより，その普及拡大を通じてヒトと地球の共生に貢献します。
－私たちは，社会，お客様，株主，従業員との信頼を第一に，企業としての持続的な発展と株主価値の最大化を図ります。

環境方針

基本的考え方

当社グループは，有限な資源である石油•天然ガスの安全で安定的な開発と供給に努力し，特に環境にやさしい天然ガス の普及拡大を通じて，地域と地球の環境保全に努めます。

行動指針

1．国内外の事業活動における環境への配慮
事業活動において環境に与える負荷を軽減します。そのた めに環境法令や環境に関する自主基準を順守することはも ちろん，環境マネジメントシステムの継続的改善に努め，汚染予防と省エネ・省資源，廃棄物の削減・リサイクルを推進します。それとともに石油•天然ガスの効率的開発， および環境保全に有効な新エネルギーや環境関連技術の調査•研究，開発，導入を積極的に進めます。

2．環境保全に貢献できるエネルギーの供給

環境性に優れたエネルギーの利用促進によりお客様ととも に環境保全に貢献できるよう努力します。 そのために製品の安全性を高め，品質管理を強化します。

3．環境パートナーシップの強化
私たちは，それぞれが環境意識の向上に努め，お客様をは じめ，お取引先や地域の人々との連携を強化し，地域の一員として環境活動を積極的に展開します。

環境重点実施事項

2008～2012年度においては以下の項目に対して重点的に
取り組みます。
1．環境にやさしい天然ガスの普及拡大に努めるとともに，国内事業場の鉱山施設における温室効果ガスの排出原単位削減に努めることにより，地球温暖化の抑制に貢献する
2．国内事業場からのPRTR対象物質や揮発性有機化合物 （VOC）の排出量削減，坑廃水の適切な処理および土壌汚染対策の適切な実施により大気，水質，土壌の汚染防止に努める

3．二酸化炭素の地中貯留の実現普及，ガストゥーリキッド （GTL）技術の確立，ジメチルエーテル（DME）の普及など，環境保全に有効な技術開発を推進する
4．当社グループが実施する海外事業において，環境保全•省 エネ技術を活用し，事業活動に伴う環境負荷の低減に努 める
5．国内において植林や森林整備事業を実施するとともに，カー ボン基金への出資や二酸化炭素排出削減を目的とした国民運動への参加を通じて温室効果ガスの削減に寄与する
6．オフィスでの省エネ・省資源・リサイクルを推進し，物品 の購入や設備・プロジェクト投資の際には環境に配慮する よう努める

環境取組みの推進体制

当社では，本社，各鉱業所，技術研究所，および日本海洋石油資源開発株式会社の新潟鉱業所に環境担当グル—プを配置し，連携をとりながら環境取組みを行っています。

また，さまざまな環境への取組みを会社全体の取組みとして より効果的に実施できるように環境委員会を設置しています。

さらに，環境に関する問題について詳細な検討を行うため，関係部室長からなる環境専門部会が環境委員会の下部組織とし て設置されています。

2010年4月には，環境•新技術事業推進本部を新たに設置し，環境関連事業の推進を通して環境への取組みのより一層の充実 を図ることとしました。

環境委員会の概要

委員長	常勤役員の中から社長が委嘱
副委員長	常勤役員の中から社長が委嘱

環境マネジメントシステム

IS014001環境マネジメントシステムの導入と認証

当社は，環境方針に掲げた内容を達成するためにISO14001環境マネジメントシステム（EMS）を導入しています。2002年 に札幌鉱業所（現北海道鉱業所）でISO14001の登録認証を受 けたのを皮切りに，2005年にかけて本社を含むすべての事業所 および子会社の日本海洋石油資源開発株式会社の新潟鉱業所に おいて，個別にEMSを導入してきました。

2009年には，これまで各事業所単位で運用していたEMSを全社統合し，個別に受けていたISO14001規格の登録認証を全社一括認証としました。

EMSの全社統合により，それまで事業所ごとに作成していた EMSの環境方針を一本化し，その環境方針に基づいて，各事業所が特長を活かしたEMS活動を企画し実行する体制が整い，よ り活発で効率的な運用が可能となりました。さらに，全社的な環境保全への取組み内容の決定や経営層によるEMS活動の年

EMSによる各事業所の取組み（2010年4月時点）

環境重点実施事項	背 海 道 蹠 所	秋 畀 鏣 普	長 岡 蹠 所	$\begin{aligned} & \text { 本 } \\ & \text { 社 } \\ & \text { 技 } \\ & \text { 研 } \end{aligned}$	
環境にやさしい天然ガスの普及拡大 に努めるとともに，国内事業場の鉱山施設における温室効果ガスの排出原単位削減に努めることにより，地球温暖化の抑制に貢献する	＊		＊	＊	
国内事業場からのPRTR対象物質や揮発性有機化合物（VOC）の排出量削減，坑廃水の適切な処理および土壌汚染対策の適切な実施により大気，水質，土壌の汚染防止に努める	＊	＊	＊		
二酸化炭素の地中貯留の実現，普及， ガストゥーリキッド（GTL）技術の確立，ジメチルエーテル（DME）の普及 など，環境保全に有効な技術開発を推進する				＊	
国内において植林や森林整備事業を実施するとともに，カーボン基金へ の出資や二酸化炭素排出削減を目的とした国民運動への参加を通じて温室効果ガスの削減に寄与する		＊	＊		＊
オフィスでの省エネ・省資源・リサ イクルを推進し，物品の購入や設備• プロジェクト投資の際には環境に配慮するよう努める	＊	＊	＊		＊

＊環境目的•目標の対象としている事業所を示し，これがない事業所は該当する環境重点実施事項に関し，大きな環境負荷がないか，取組みが維持管理項目へと移行した事業所のいずれか です

間総括（マネジメントレビユー）を経営トップが参画する環境委員会（前述）で行うなど，全社一体となった環境保全への取組み が推進されることとなりました。

ISO14001環境マネジメントシステムによる環境保全への取組み

ISO14001環境マネジメントシステムでは，当社の環境方針 に基づいて，環境目的•目標を設定し，具体的な活動を展開す ることとしています。また，各事業所においても，その地域の特性に配慮し，環境方針の環境重点実施事項に沿った環境目的•目標を設定し，環境保全への取組みを実施しています。

IS014001環境マネジメントシステムの継続的改善

当社では，ISO14001環境マネジメントシステムの認証取得以来，EMSの継続的改善に努めています。毎年，環境目的•目標の達成度やEMSの運用状況について，環境監査員養成研修を受講し，監査員の資格を取得した社員が他の部署を監査する「内部監査」を実施しています。

また，外部審査機関による審査を毎年受けており，内部監査 や外部審査で発見された改善提案事項の内容を分析し，EMSの継続的改善につなげています。

環境配慮投資

当社は，各投資案件•条件の審議に当たつては，環境情報を勘案し，検討項目に「環境配慮」を加えて意思決定をし，実施す るように努力しています。

特に，海外での石油•天然ガスプロジェクトは，事業規模が大 きく，環境への負荷も高くなる傾向があります。当社では，環境影響評価の実施等の取組みを通じて，その影響を最小限に留め るよう努めています（9．海外での環境保安への取組み）。また当社の海外プロジェクトが，国際協力銀行等の金融機関から融資 を受ける際には，そのガイドラインに沿って，自然や社会環境 の保全に十分な配慮を払い，地域社会のさまざまなステークホ ルダーの理解を得ながら事業を進めています。

3 環境に関する基本的な考え

コンプライアンス

体制

当社は，「社会，お客様，株主，従業員との信頼を第一に，企業としての持続的な発展と株主価値の最大化を図る」を経営理念のひとつとして掲げています。この理念は健全な事業活動を通じて実現されるもので，当社はコンプライアンスの意義を，法令を順守することはもちろん，社会常識などの社会通念•社会規範を順守し，企業を取り巻く人々からの信頼を失わない活動 をすることが必要だと考えています。そのために，コンプライア ンス委員会を社内に設置し，企業活動にかかわる各人の倫理的 で誠実な行動を確実なものとする体制をとつています。

コンプライアンスに関する報告•相談経路

環境法令の順守

当社は，石油•天然ガスの開発にかかわる，鉱業法，ガス事業法，鉱山保安法，高圧ガス保安法，消防法などの他，各種環境法令を順守し事業活動を行っています。

また，当社の環境への取組みの重要課題として「環境法令の順守」を挙げています。

しかし，これらの環境法令は多岐•広範囲にわたっており， その対応には高い専門性が求められるとともに，将来の規制対応など，流動的な要素が非常に大きくなっています。

環境法令順守をさらに徹底し，環境に配慮した経営の促進を実現するために，環境法令に関して広範囲で専門的な知識•情報を有する会社とコンサルティング契約を結んでいます。また， この契約には当社の法令順守状況を第三者的な視点から再確認 するという目的があります。

当社の事業活動にかかわる主な環境法令は以下の通りです。

- 地球温暖化対策の推進に関する法律（温対法）
- エネルギーの使用の合理化に関する法律（省エネ法）
- 特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律（PRTR法）
- 水質污濁防止法
- 大気汚染防止法
- 海洋汚染等及び海上災害の防止に関する法律（海洋汚染防止法）
－廃棄物の処理及び清掃に関する法律（廃掃法）
なお，2009年度は罰則をともなう重大な法令違反は発生し ていません。

環境情報統合管理システム

当社の事業活動にともなって発生する環境負荷は，探鉱•掘削部門，生産部門，輸送部門と発生部門が多岐にわたつている だけでなく，各鉱業所単位，各生産鉱場単位でデータを取得し管理するため，一般的な方法では煩雑かつ膨大な集計作業が必要となります。また，集計時に誤謬が生じたり迅速な集計がで きない可能性があります。そのような作業を回避し，迅速かつ正確に環境負荷データを入力，集計，管理するシステムとして，当社は環境情報統合管理システム「Together」を開発し，2007年7月に本格運用を開始しました。
このシステムは以下の特徴を持っています。

① Webブラウザを使って各事業所から簡単にデータの入出力 を行うことができる

② リアルタイムで，すべての部署が各種環境負荷データを共有 できる
③ 環境負荷データの信頼性が確保できる
④環境負荷データを一元的に管理できる

このシステムを利用することにより，行政への報告，取引先 や加盟する業界団体への環境情報の提供が円滑に行われるよう になっただけでなく，当社の環境への取組みに対する成果がリ アルタイムで評価できるようになりました。
なお，このシステムは，環境法令の改正や新たな規制対象物質の追加等に対応するため，継続的な改善を行うようにしてい ます。
自主行動計画，環境報告書など）

OUTPUT

環境情報統合管理システム

地球温暖化対策

2008年にはじまった京都議定書の第一約束期間も3年目に入り，地球温暖化対策はまさに待ったなしの状況にあるといえ ます。ポスト京都議定書の枠組み作りを目指して，2009年12月にコペンハーゲンで開催された「第15回気候変動枠組条約締約国会議（COP15）」で，わが国はすべての主要排出国による公平かつ実効性のある国際的枠組みの構築および意欲的な目標の合意を前提として，わが国の温室効果ガス排出量を2020年まで に1990年比で 25% 削減することを宣言しました。この会議で は京都議定書の第一約束期間（2008～2012年）終了後の拘束力のある枠組み作りについての合意には至らなかったものの，米国や中国を含む55力国から2020年までの温室効果ガス削減

目標が示されたこともあり，今後の進展が注目されます。一方国内においても，国内排出量取引制度や再生可能エネルギーの固定価格買取制度などの議論が進められています。これらの動き を受けて，各企業はこれまで以上に温室効果ガスの排出量削減努力が必要となります。

エネルギー資源を扱う当社にとつても，地球温暖化は最も重要な環境問題のひとつです。環境にやさしい天然ガスの普及拡大や，省工ネ技術の推進，新たな技術開発，植林などを通じて地球温暖化の抑制に少しでも貢献できるよう日々努力を重ねて います。本章においては，当社の地球温暖化に対する取組みの一端をご紹介します。

経団連「地球温暖化対策環境自主行動計画」（自主行動計画）への参加

わが国が主導し2005年2月に発効した京都議定書において， わが国は，2008～2012年（第一約束期間）の温室効果ガス排出量を1990年比マイナス6\％にすることとしています。

当社は石油鉱業連盟を通じて自主行動計画に参加しています。石油鉱業連盟の自主行動計画では，4つの目標を設定して温室効果ガスの削減を行う他，さまざまな形での温室効果ガス削減努力が示されています。

また，日本経団連は2009年12月，温室効果ガス削減に向け た産業界の新たな取組みである「低炭素社会実行計画」を策定し ました。同計画は，自主行動計画を継承し，2020年における温室効果ガス削減目標を示すとともに，「2050年における世界の温室効果ガスの排出量の半減目標の達成に日本の産業界が技術力で中核的役割を果たすこと」をビジョンとして掲げています。

当社は，温室効果ガス削減に向けて引き続き最大限の努力を継続すべく，石油鉱業連盟を通じて同計画に参加することとしてい ます。

石油鉱業連盟自主行動計画

4つの目標設定
（1）業界全体で2008～2012年度の5年間の平均値で鉱山施設に おけるGHG排出原単位1990年比20\％削減（脱 CO_{2} を除く）
（2）海外でのGHG削減
（3）天然ガス開発促進
（4）GHG削減技術開発
付帯事項
（1）その他の温暖化対策：植林，CDM，事務所•輸送における削減等
（2）その他の環境対策：VOC•BTX削減，自然保護等

試行排出量取引スキームへの参加

2008年10月に内閣府，経済産業省，環境省が事務局となり「試行排出量取引スキーム」が開始され，当社もこの制度に参加 しています。

この制度では，経団連の自主行動計画参加企業は，原則的に自主行動計画に沿った排出目標の設定や排出量の検証が求めら

れています。当社も，自主行動計画で設定した目標を掲げてこ の制度に参加していますが，もし目標の未達があった場合には， この制度によって，未達分の排出権を購入することが可能になり ます。

温室効果ガスの排出

当社の事業活動により排出される温室効果ガスは，燃料や電力使用によって発生するエネルギー起源の二酸化炭素，および天然ガスより分離除去された二酸化炭素，生産施設の維持管理 やパイプライン工事にともなう天然ガスの放散などによって排出 される非エネルギー起源の二酸化炭素やメタンがあります。

当社における2009年度の温室効果ガスの排出量は，二酸化炭素換算で30．3万トンであり，2008年度と比べて，2．8万トン （2008年度比 10.1% ）増加しました。エネルギー起源の温室効果ガス排出量は，二酸化炭素換算で17．7万トンであり，2008年度比で0．8万トン（2008年度比4．7\％）増加しました。また， 2009年度の非エネルギー起源の温室効果ガス排出量は，二酸化炭素換算で12．5万トンであり，2008年度と比べ，2．0万トン （2008年度比18．9\％）増加しています。これらは，勇払油ガス田（北海道）の第二プラントが本格稼働したことなどによるもの です。

自主行動計画では，石油鉱業連盟参加企業全体での2008～ 2012年度の5年間平均値で，鉱山施設における温室効果ガス排出原単位を1990年比で20 \％削減することを目標に掲げていま す。参加企業の個別事情を勘案した当社単独の目標は1990年比で原単位 10% 削減になります。

排出源別温室効果ガス排出量の推移 $\left(\mathrm{CO}_{2}\right.$ 換算）

当社の鉱山施設における2009年度の温室効果ガス排出原単位は，二酸化炭素換算で1．98kg－CO2／GJであり，2008年度よ り0．24kg－CO2／GJ（2008年度比13．8\％）上昇しました。
油ガス田から生産される油とガスの数量，成分，圧力や生産•供給施設などの特徴により，温室効果ガス排出原単位に地域差 が生じます。当社の場合，比較的排出原単位が高い北海道地区 の生産量が増えたため，2004年以降排出原単位が上昇傾向に あります。

この対策として，北海道地区においてフレア処理している余剰低圧ガスを，液化石油ガス（LPG）として有効利用するためのプ ラントを現在建設中であり，2011年度の完成を予定しています。 この設備の稼動により温室効果ガス排出原単位を下げ，自主行動計画の目標が達成できるように努めます。

また，自主行動計画の目標達成のためのオプションとして，当社の参加しているバイオ炭素基金プロジェクトから取得予定の排出権や，当社が自主行動計画と併せて参加している試行排出量取引スキームに基づく排出権を利用することも考えています。
後述の通り，バイオ炭素基金から2012年までに13．6万トン の排出権獲得が見込まれています。

排出原単位の推移

原単位変化率（1990年度を1とした場合）

※原単位の算定は石油鉱業連盟自主行動計画の算定方法に基づいています排出原単位 $=$ 温室効果ガスの排出量 \div 原油と天然がスの生産量を熱量換算した値

省エネルギー活動の推進

生産鉱場における省エネルギー活動の推進

エネルギー起源の温室効果ガスの排出量を抑制するため，省 エネルギー活動の推進に努め，勇払プラント（第一プラント） では，コージェネレーションシステムを導入しています。コー ジェネレーションシステムとは，天然ガスを使ってガスタービン により発電を行うと同時に，排熱を利用して蒸気を作り，エネ ルギーを効率よく利用する方法です。同コージェネレーションシ ステムによる2009年度の発電量は8，470千kWhです。

オフィスにおける省エネルギーの取組みと啓発活動
環境マネジメントシステムにより，消費電力の削減に取り組 み，本社や鉱業所において，未使用機器の電源カット，昼休み等の消灯やパソコン電源OFFの活動を推進しています。

余剩低圧ガスの有効利用

非エネルギー起源の温室効果ガスとして，原油や天然ガスを処理する過程に発生する余剰低圧ガスがあります。このガスは，圧力が低く，熱量や発生量に変動があるためその用途が限られ， フレア処理されます。そこで，昇圧回収設備，LPG回収設備，余剰低圧ガスが利用可能なボイラーやヒーターなどを設置し，余剰低圧ガスの有効利用を積極的に推し進めています。

輸送部門における温室効果ガスの排出削減

当社の事業活動に関連する輸送部門としては，原油の内航船輸送，原油のタンクローリー輸送，LNGのタンクローリー輸送， LNGの鉄道輸送などがあります。当社ではLNGタンクコンテナ鉄道輸送を開発し，モーダルシフトを実現するとともに，タン クローリーのエコドライブを徹底するなどして，温室効果ガスの削減を行っています。

○ 天然ガスの普及拡大による貢献

延びる・広がる輸送•供給ネットワーク

天然ガスは石油•石炭等，他の化石燃料に比べて燃焼時の CO_{2} 排出量が少なく，酸性雨の原因となる硫黄酸化物（SOx），窒素酸化物（NOx）排出量も低く抑えられる環境にやさしいエネ ルギーです。

またコージェネレーションシステム等の活用によって，より一層の省工ネ，地球温暖化防止につながることから，当社は天然ガスの普及拡大を通じた地球温暖化防止に引き続き努力して いく方針です。

$\mathrm{SO}_{x} \cdot \mathrm{NO}_{x} \cdot \mathrm{CO}_{2}$ 排出量の比較

（注）単位発熱量当たりの排出量を石炭を 100 とした場合の割合出典：「IEA Natural Gas Prospects to 2010 （1986）」

パイプライン

パイプラインは大量かつ効率よく天然ガスを供給することが可能なことから，エネルギー輸送段階における環境負荷低減に寄与します。 当社は国内で発見した油ガス田を開発するため長年にわたりパイプラインネットワークの拡充に取り組み，都市 ガス会社•電力会社•産業用需要家向けに供給してきました。

また広域的な天然ガス供給を実現するための長距離幹線ガス パイプラインとして，新潟•仙台間ガスパイプライン（総延長 261 km ），勇払•札幌間ガスパイプライン（総延長 75 km ）を建設 し，仙台市，札幌市，苫小牧市，千歳市等，パイプライン沿線地域での天然ガスの普及•拡大に努めてきました。2007年3月に は，新潟•仙台間ガスパイプライン沿線上に位置する宮城県白石市から福島県福島市を経由し郡山市に至る白石•郡山間ガス パイプライン（総延長96km）からの供給も開始しています。

当社のパイプラインは北海道，秋田県，山形県，新潟県，宮城県，福島県にまたがり総延長は約900km（ガスパイプライン約 800km，原油パイプライン約100km）におよんでいます。

当社の敷設するパイプラインは曲げや衝撃に強く安全性に優 れた高張力鋼管を採用し，大地震においてもその耐震性を発揮 しています。また，遠隔監視制御システムを用いて24時間体制 で監視を行うとともに，巡回パトロール等を通じて安全かつ効率的な操業を行っています。

環境に配慮した事業計画

天然ガスや原油等の燃料輸送用のパイプラインの敷設事業に当たつては，周辺環境への影響に対して細心の注意が払われま す。燃料輸送用パイプラインは，大部分が地中に埋設され，運用時の環境負荷も抑えられる優れた輸送手段ですが，敷設事業 を実施するに当たつては，施工時から完成後の運用時までの環境影響を考慮する必要があります。
当社では事業実施前に，工事実施時の大気•騒音•振動など の生活環境への配慮はもちろんのこと，計画地域内に生息する動植物への影響を生物多様性保護の観点から評価しています。評価の結果，事業の実施が生活環境や生態系に影響を与える可能性があると判断されれば，計画内容を変更し，保全すべき対象の環境が担保される代替案を事業計画として採用することに しています。

事業予定地の自然環境調査

LNG輸送システム

（輸送ネットワークを広げる画期的な供給システム）
－LNGタンクローリー輸送
環境問題に対する意識の高まりを受け，パイプラインネット ワークの未整備地域でも天然ガス導入への期待が高まっていま す。当社では1984年からタンクローリーを使って液化天然ガス （LNG）を供給する「LNGサテライト供給」を行っており，秋田県，新潟県，山形県，福島県の都市ガス事業者に供給しています。

LNGタンクローリー

－LNGタンクコンテナ鉄道輸送

LNG出荷基地から遠距離のお客様ならびに冬期間の厳しい気象•道路条件が予想される地域への安全なLNG輸送方式として，当社はLNGタンクコンテナを鉄道貨物として輸送する方式を開発し，2000年から石川県，富山県の都市ガス事業者にLNGサ テライト供給を行っています。

LNGタンクコンテナ鉄道輸送

天然ガス液化プラント

北海道では，パイプライン未整備地域の天然ガス需要に応え るため，1996年に生産を開始した当社の勇払油ガス田（苫小牧市）からのガスを利用した国内初の天然ガス液化施設となる「勇払LNGプラント」を建設し，2003年から旭川の都市ガス事業者向けにLNGサテライト供給を開始しました。2007年には第2液化系列も完成し，帯広，岩見沢，釧路，北見，室蘭の都市ガス事業者向けにもLNGサテライト供給を実施しています。

供給ネットワーク

主要パイプライン
－LNGサテライト供給

その他の環境負荷の低減

VOCの排出抑制

VOC（Volatile Organic Compounds）は，揮発性有機化合物 の略で，浮遊微粒子物質（SPM）や光化学オキシダントの原因物質といわれています。2004年度に，大気汚染防止法が改正され るなど，法による規制と自主的取組みを適切に組み合わせ相乗的な効果を期待するベストミックスを基本とし，VOCの排出抑制が行われています。当社は，2005年度より天然ガス鉱業会の一員として自主行動計画に参加し，業界として2010年度におい て2000年度比で45\％削減することを目標に排出抑制に取り組 んでいます。
VOCは，原油貯蔵タンク，ガス中の水分などを取り除くガス処理の過程などにともない放散されるメタンを除く揮発性炭化水素が主なもので，この中にはPRTR対象物質であるBTXも含 まれています。その対策は，原油貯蔵タンクの密閉化やガス処理設備などから排出されるVOCの焼却処分や回収除去が一般的 です。

2007年7月に発生した新潟県中越沖地震により，原油輸送パ イプラインが破損し，長岡地区で生産される原油の一部をパイプ ライン輸送からタンクローリー輸送に切り替えました。そのため，原油の処理にともなって余剰低圧ガスが発生し，VOCの排出量 が地震発生前に比べて大幅に増加しています。この中越沖地震

による増加分については，自主行動計画の目標達成に向け2009年度末までに完了する計画で恒久的対策工事を実施しましたが，設備の不具合が生じ完成が2010年度後半になる見通しであるこ とから，2010年度での目標達成は不可能となっています。

しかし，できるだけ早く対策工事が完成するよう努力し， 2010年度のVOC排出量を可能な限り低減するよう尽力するとと もに，2011年度には2000年比45\％削減の目標を達成できる ものと考えています。

VOC排出量の推移

窒素酸化物・ばいじんの排出抑制

天然ガスは，石油や石炭などの燃料に比べ温室効果ガスの排出量が少ないだけでなく，硫黄や窒素化合物を含まないため， VOCとともに光化学オキシダントの原因となる窒素酸化物や酸性雨の原因となる硫黄酸化物の排出が非常に少ないクリーンな エネルギーです。当社は，天然ガスの利用を積極的に推し進め ており，生産部門を中心に，使用エネルギーの 77% が天然ガス などの気体燃料となっています。一方，その他のエネルギーの うち8\％は，軽油や重油の液体燃料で主に掘削部門によるもので

エネルギー活動におけるエネルギー使用別割合液体燃料 8\％ （軽油，重油など）

電気 15\％

す。以下のように，生産鉱場にある，燃焼装置等の排出ガス中の ばいじんや窒素酸化物の濃度は，基準値をクリアーしています。

排出がスの測定結果

機器名＊1		測定項目＊2			
		ばいじん濃度 （ $\mathrm{g} / \mathrm{Nm} \mathrm{m}^{3}$ ）		窒素酸化物濃度 （ppm）	
		測定値	基準値	測定値	基準値
勇払プラント	ボイラー	＜0．01	0.10	140	150
	ガスタービン	＜0．01	0.05	51	70
	ガスエンジン	＜0．01	0.04	300	600
勇払LNGプラント	ボイラー	＜0．01	0.10	74	150
	ガスタービン	＜0．01	0.05	63	70
吉井鉱場	ガスエンジン	＜0．01	0.05	＜10	2，000
紫雲寺鉱場	ガスエンジン	＜0．005	0.05	280	600
岩船沖プラットフォーム*3	ディーゼル 発電機	0.033	0.10	540	950
	ガスエンジン	＜0．01	0.05	360	1，000

[^0]
5 その他の環境負荷の低減

化学物質の排出抑制

PRTR（Pollutant Release and Transfer Register：化学物質排出移動量届出制度）とは，特定の化学物質が，どのような発生源からどれくらい環境中に排出されたか，あるいは廃棄物に含 まれて事業所の外に運び出されたかというデータを調べ，公表す る仕組みです。対象となる化学物質は，PRTR法の中で「第一種指定化学物質」として定義されています。これは，人の健康や生態系に有害な恐れがある等の性状を有しかつ環境中に広く存在 すると認められるもので，462種類の物質が指定されています。

PRTR法に基づくBTX排出量推移＊
（t）

年度	2001	2002	2003	2004	2005	2006	2007	2008	2009
ベンゼン	66.0	35.9	6.5	7.6	11.1	6.2	9.6	13.1	11.1
トルエン	46.7	15.7	2.2	2.6	3.2	2.2	2.5	2.4	3.5
キシレン	24.3	7.9	0.6	0.7	0.8	0.6	0.5	0.2	0.8
合計	137.0	59.5	9.3	10.9	15.1	9.0	12.6	15.7	15.4

＊日本海洋石油資源開発（株）を含みます

当社において，PRTRの報告対象となる物質は，ベンゼン・ト ルエン・キシレン（BTX）であり，その一部がガス処理の過程や原油貯蔵タンクより排出されていました。そこで，当社は2002年度よりBTX排出抑制に取り組んだ結果，2009年度のBTX排出量は15．4トンと2001年度比で89\％の削減を達成しました。

なお，2007年から排出量が微増しましたが，これはVOCと同様2007年の中越沖地震の影響によるものです。

PRTR法に基づくBTX排出量推移

廃棄物の処理，リサイクル活動

廃重物等の排出とリサイクル活動

一般廃棄物は，取扱業者と協力して分別収集，リサイクルに努めています。事業活動により発生する産業廃葉物は，法令にし たがって適切に処理しています。

また当社では，かねてより事業活動によって発生する廃棄物の リサイクルに努めてきました。事務所から排出される一般廃棄物の削減に努め，生産鉱場から排出される廃油や鉄工場から排出される金属屑などは，専門業者に委託して再利用を促進して います。

各事業所における廃棄物の分別活動の他，各生産鉱場，鉱業所，掘削現場，事務所で使用済みとなったヘルメット，作業服，保安靴，事務服などについては，ミドリ安全株式会社が推進す る「ゼロエミツションシステム：ZERO21」＊に協力参加し，それ らの回収に努めています。
鉄工場では，毎月実施している安全衛生委員会およびEMS活

動の報告会において定めた独自の保安•環境目標のひとつとし て，鉄工場周辺地域の清掃美化活動を実施しています。春先か ら降雪までの間2カ月に一度の割合で，全員で道路などに落ち ている煙草の吸殻や空き缶，ペットボトルなどを回収し，リサイ クル活動を実施しています。
＊「ゼロエミッションシステム：ZERO21」：回収されたヘルメットや金属部品はプ ラスチックや金属原料として再利用され，その他の回収物は高温の炉で溶融し， ガス，硫黄，混合塩，金属水酸化物，メタル，スラグに分解後，工業用ガス，工業原料，建設資材などへと再資源化するシステム

国道沿いの清掃活動

坑廃水処理装置

掘削作業等にともない発生する坑廃水の環境への負荷を軽減 するため，減圧蒸留式の坑廃水処理装置を設置しています。こ の装置によって得られた蒸留水は，掘削泥水やボイラー水とし て有効利用し，また余剰掘削泥水などからなる濃縮汚泥は産業廃棄物として処理しています。この坑廃水処理装置で再生し，ボ イラー水として再利用した水の量は2009年度は1，912k とです。

アスベストへの対応

坑井の掘削中に使用する泥水の一部には，1989年まではアス ベストが含まれていましたが，1990年以降アスベストを含む泥水 は一切使用していません。また，一部の機器•設備に石綿紡績品が使用されていることも判明しましたが，代替品への交換など適切な対応を終了しています。

また，当社の建屋，生産施設におけるアスベストの使用状況 については，調査した結果，ごく僅かの建屋で飛散性のある石綿含有吹付け材の使用が確認されましたが，環境測定の結果，石綿粉塵は検出されず，飛散によるばく露の恐れのないことが確認されました。これらに関しては，吹付け材の除去および封 じ込めの対策工事を2006年3月に完了しています。

健康被害の状況については，当社元従業員の方で坑井の掘削作業に従事していた1名の方が2007年7月に胸膜中皮腫により亡くなられ（享年79歳），2007年11月に労災認定されました。 2005年度末までに，退職者を含む当社従業員に対し，本人よ

り問診の希望があるか，または過去の健康診断結果によりアス ベスト関連疾患を疑われるような呼吸器所見があった場合には，適宜，健康調査を実施しました。

その後も定期健康診断や人間ドックの受診案内の際は，「作業歴」を申し出るなどして自己管理を徹底するよう指導しています。今後も当社はアスベストの使用が大きな社会問題であること， かつこの問題が従業員および元従業員の健康に最も重要な問題 であることを強く認識し，過去に当社においてアスベストを使用した作業に従事していた従業員および元従業員に対し，アス ベストの使用状況や当社の対応について適宜通知し，健康相談 や専門検診を継続して行っていきます。併せて，今後も引き続 き，定期健康診断および人間ドックを鋭意実施の上，結果に よっては専門医療機関での検査を実施し，迅速かつ適切な対処 を行っていきます。

グリーン調達

右記のグリーン調達基本方針通り，各事業所では，オフィス事務用品について環境に配慮した調達を心がけています。

2006年4月より，本社および鉱業所の事務所においては，下記品目についてグリーン調達の達成率を集計し，達成率 100% を目標に取り組んでいます。

対象品目 GPN＊ガイドラインのGL－1（印刷•情報用紙） GPNガイドラインのGL－6（文具•事務用品）

グリーン調達基本方針

① 製品やサービスの購入または工事を実施する前に，その必要性を十分に考える
（2）環境配慮型製品・サービスを可能な限り優先して購入する。 また工事においても，可能な限り環境に負荷を与えないように努力する
（3）取引先と協力•協働して，地域と地球の環境保全に対し，積極的に取り組む

環境にやさしい事業•技術開発

当社は，地球環境問題を重点経営課題としてとらえ，環境に貢献する技術の開発•事業化にも積極的に取り組んでいます。 また，2010年4月には環境•新技術事業推進本部を新たに設置し，環境関連事業の推進を図ることとしました。

二酸化炭素回収•貯留（CCS）

二酸化炭素回収•貯留とは

事業活動によって排出される二酸化炭素（ CO_{2} ）を分離回収し，地中に貯留する技術は，Carbon Dioxide Capture and Storage の頭文字をとってCCS＊1と呼ばれています。化石燃料を利用す ることにより，やむをえず出てしまう CO_{2} を大規模かつ安全に， しかも即効性をもつて削減することが可能な技術として，CCSが非常に注目されています。 CO_{2} の貯留方法には，地下 $1,000 \mathrm{~m}$以深にある帯水層，枯渇した油ガス田，石炭層に貯留する方法 があります。この中でわが国において期待されているのが，帯水層と枯渇油ガス田への貯留です。そのポテンシャルは，およ そ1，500億トンと見積もられています＊2。 これはわが国の100年分の CO_{2} 排出量に相当します。
＊ 1 厳密にはCCSには海洋隔離や鉱物固定といった手法も含まれますが，ここでは すでに実証段階に入っている地中貯留のみをCCSと呼ぶこととします
＊2 2006年5月経済産業省産業構造審議会資料による

高度な統合技術

当社は，半世紀にわたり，国内外において石油•天然ガスの探鉱，開発を行い，高度な統合技術としての石油開発技術を

CCS概念図

培ってきました。石油開発では，地下数千mの地質構造の把握 や岩石物性の評価技術，深度•水平距離ともに数千mのター ゲットを目指して坑井を掘削する大偏距井掘削（ERD）技術，坑井において地層の物性値を測定する物理検層技術，原油や天然 ガスを安全に生産する技術，油層・ガス層での原油•天然ガス の挙動シミュレーション技術，ならびに弾性波探査を中心とし た地下モニタリング技術などの高度先端的技術が駆使されるこ とになります。さらにCCSには，これらの高度な統合技術の利用が不可欠です。

大規模早期 CO_{2} 排出削減を目指して

2008年の洞爺湖サミットにおいて，2010年までに全世界で 20の大規模CCS実証プロジェクト開始を支持することが宣言 され，これまでにも増してCCSの重要性が認識されたのを機会 に，米国，中国，EU，カナダ，オーストラリアなど世界的にCCS への取組みが加速しています。

また，2009年の「第15回気候変動枠組条約締約国会議（COP 15）」によって，先進国，途上国がそれぞれ意欲的な2020年の削減目標を立て，温室効果ガスの大幅削減 に取り組んでいますが，さらに削減が必要 なことは国連気候変動に関する政府間パ ネル（IPCC）や国際エネルギー機関（IEA） のレポート等で明らかにされています。IEA などが予測する今後のエネルギー需給見通しでは化石燃料依存は当分続くとされ， CCSによる削減は今後の持続的な開発に不可欠なものとなっています。

当社は，すでに2002年より専門部署で ある環境エンジニアリング事業推進室を設けて，CCSの実施に向けた準備を進め ていました。2003年から2005年にかけ て，新潟県長岡市の岩野原地区において， （財）地球環境産業技術研究機構（RITE） により，総量およそ1万トンの CO_{2} を圧入 する基礎実証試験が行われ，わが国にお

けるCCSの第一歩を踏み出すことになりましたが，当社は，こ の基礎実証試験に対してさまざまな技術支援を行いました。 2008年には，当社は大規模実証試験に向けて最先端のCCS要素技術を保有するわが国の主要な電力会社，製鉄会社，エン ジニアリング会社，石油会社などとともに，「日本CCS調査株式会社」を設立し，主要な役割を果しています。同社は，経済産業省および（独）新エネルギー・産業技術総合開発機構からの補助あるいは委託を受けて，大規模実証試験実施に向けた調査を進めています。調査は，机上検討の他，苫小牧沖での3D弾性波探査，勿来•磐城沖での海底パイプラインルート調査をこれま でに実施し，さらにこれらの海域で3D弾性波探査，調査井の掘

削，北九州北部地域でのボーリングなどを実施•予定しています。 この他，当社は苫小牧市や地域の商工会議所，企業，学校， NGOなどと一緒に，2010年に設立の運びとなった苫小牧CCS促進協議会（会長：苫小牧市長，副会長：苫小牧商工会議所会頭，当社北海道鉱業所長）で主導的役割を果たしており，国内 でのCCS促進に貢献するとともに，日中CCSEOR＊の技術交流 に参加するなど，海外のCCS促進にも貢献しています。
＊原油の増進回収（EOR）方法のひとつとして， CO_{2} の油層への圧入がある。2006年福田首相と胡鉓濤国家主席の日中首脑会談で，CCSの貯留部分をEORで実施 するCCSEORの推進が合意され，これに基づき中方が国家発展改革委員会，中国石油と日方が経済産業省，RITE等で具体化が進められている

地熱

地熱発電は，地下より高温の蒸気•熱水を取り出し発電する方法です。再生可能エネルギーのひとつであり，新エネルギー利用等の促進に関する特別措置法（新エネ法）による新エネルギー のひとつでもあります。地熱発電は他の再生可能エネルギーに比べ，昼夜•天候にかかわらず24時間連続して安定的に発電で きること，ライフサイクルアセスメント（LCA）でのCO2 排出量が少ないこと（下のグラフ参照），火山国であるわが国には豊富に存在する純国産エネルギーである，などの特徵を持つことからそ の活用が望まれています。現在国内 18 地点で地熱発電所が稼動 しています。

国は（独）新工ネルギー・産業技術総合開発機構（NEDO）を通

※原子力は使用済燃料再処理，プルサーマル利用，高レべル放射性廃㚓物饥分等を含めて算出出典：電力中央研究所研究報告：Y09027「日本の発電技術のライフサイクルCO2 排出量評価平成22年7月」

じて，新たな地熱資源開発を目的に国内地熱有望地域での地熱開発促進調査を委託しています。地熱の調査は当社の技術を活 かせる分野であることから，この調査に積極的に応募し，2001～ 2004年度には霧島烏帽子岳地域（鹿児島県），2005～2006年度には標津妹羅山地域（北海道）の調査を受託した実績がありま す。また，2010年度は武佐岳地域（北海道）の調査を受託する ことにより地熱活用の推進に貢献したいと考えています。

当社では今後も，国の地熱関係委託調査に積極的に応募する とともに， CO_{2} 削減に寄与する技術であるバイナリー発電，さら に低温の地熱を利用する地中熱利用についても普及拡大に貢献 していきたいと考えています。

NEDO地熱開発促進調査：2001～2004年度霧島烏帽子岳地域資源調査（当社受託）

6 環境にやさしい事業•技術開発

GTLの実証とDMEの普及

GTL
GTLとはGas－To－Liquidsの略で，天然ガスから，化学反応に よってナフサ・灯油および軽油等の石油製品を製造する技術で す。この技術により製造された製品は硫黄分，芳香族分等を含ま ないことから，クリーンな，時代の趨勢に沿ったエネルギーです。 またわが国にとっては，原油ではなく天然ガスを原料とする点で， エネルギー供給の多様化につながる新しい技術となります。

GTLは，欧米メジャー等により商業プロジェクトがはじまって いますが，各社は固有の技術を持ち，この分野への参加には日本独自の製造技術開発が必要です。

わが国でも官民によるGTL技術開発が進められており，すで に当社勇払油ガス田において，日産7バレル規模の製造に成功し ています。

さらに当社は，2006年10月に設立された「日本GTL技術研究組合」の一員として，国と共同で日産500バレルの実証研究 （JAPAN－GTL）を開始しました。実証プラントは2007年に建設

GTL製造プロセス

開始，2009年4月に実証運転を開始し，今年は2年目の運転中 です。GTLプラントを構成する合成ガス，精製プロセス部分に おいてはすでに期待した能力を発揮しています。実証運転によ りGTL製造技術を確立するとともに，商業規模（日産数万バレ ル）の技術を確立します。

JAPAN－GTLの特徴は，天然ガス中や排ガスの二酸化炭素を原料として利用できるという点にあり，環境面・コスト面で競争力を持つ技術です。世界には二酸化炭素を多く含むために未開発となっているガス田も多く，これらの開発に道が広がり，限り ある貴重な天然ガス資源を有効活用することができます。

DME

DMEとはDimethyl Ether（ジメチルエーテル）の略で，現在，主に化粧品や塗料等のスプレーの噴射剤用途に使用されていま す。またLPGに類似した物性を持ち，LPG補完燃料としての用途や，セタン価が高くスス（PM）が全く発生しないという特長か ら，自動車燃料用途などが期待されています。

DMEの普及促進については，国も製造技術•利用技術の開発等の支援を実施しています。

この燃料として優れたDMEの普及を図るため，当社を含む民間 9 社は「燃料DME製造株式会社」を設立し，年産 8 万トンの DME製造プラント（2008年8月稼動）を新潟市に新設して積極的な販売活動を展開しています。

DMEは天然ガスや石炭，バイオマスなど幅広い資源からの製造が可能であり，燃料用途をはじめとする将来のクリーンエネ ルギーとして注目されています。

出典：燃料DME製造（株）Webサイト

メタンハイドレート

環境にやさしいクリーンエネルギー

メタンは環境にやさしいクリーンエネルギーです。石油や石炭に比べ燃焼時の二酸化炭素排出量が少なく，さらに硫黄分を含まないことから大気汚染や酸性雨の原因となるSOxなどの有害物質を排出しません。

メタンハイドレートは雪の塊，シャーベットのように見えま す。その中には，体積比で約170倍ものメタンガスが水の分子 によって封じ込められており，自然界においては低温•高圧条件下で安定した状態で存在しています。

燃える氷
写真提供：メタンハイドレート資源開発研究コンソーシアム

資源としてのメタンハイドレート

メタンハイドレートは深海の海底面下や極地付近の永久凍土層の下に存在していることがわかっています。わが国でも周辺海域で実際にメタンハイドレートの存在が確認されました。わ が国海域には，資源量として7．35兆m³（メタン換算）のメタンハ イドレートが存在するとの試算＊1があり，これはわが国の天然ガ ス消費量＊2の約80年分に相当します。メタンハイドレートの開発は，わが国のクリーンエネルギーの自給率向上に大きく貢献 するものと期待されています。
＊1 日本周辺海域のハイドレート原始資源量：7．35兆m ${ }^{3}$
産業技術総合研究所 佐藤幹夫他（1996年，地質学雑誌）
＊2 日本の天然ガス年間消費量： 902 億 m^{3}（ 2007 年末，JOGMEC資料）

メタンハイドレートの開発技術研究

メタンハイドレートは地下では安定して存在していることか ら，ガスとして地上に取り出すことが逆に難しく，簡単に生産す ることができません。 エネルギーとして利用できるようにする には多くの技術的課題を乗り越える必要があります。

メタンハイドレートからメタンを取り出すには，熱を加える か，あるいは圧力を下げることが理論的に考えられますが，いず れの手法も実際に有効であることを現場において確認していま す。特に2008年3月には，世界で初めて減圧法による連続的な （6日間）ガス産出が成功し，減圧法を主体とした産出手法が有効なアプローチであることが証明されました。
（2002年，2008年いずれもメタンハイドレート研究コンソーシアムによるカナダ・マ リックでの産出試験結果）

ガス産出試験
出典：JOGMEC NEWS RELEASE 2008．3．28

当社の取組み

当社は，メタンハイドレートのポテンシャルに早くから着目 し，国の主導するメタンハイドレート資源開発研究コンソーシア ムの主要メンバーとして，開発技術の研究に積極的に取り組んで きました。物理探鉱による地下構造とメタンハイドレート層の調査，海洋域における坑井掘削など，これまで大きく貢献してき ています。メタンハイドレートをわが国のクリーンエネルギーと して利用していくためには，海底面下の地層よりメタンハイド レートを採収するためのさらなる技術開発が欠かせません。こ の先もたゆまぬ努力を重ね，世界をリードしていきます。

6 環境にやさしい事業•技術開発

バイオガスプロジェクト

環境性に優れたエネルギーのひとつにバイオガスがあります。 バイオガスとは，下水処理場や食品工場などの廃水処理工程 の一種であるメタン発酵により発生するメタン，二酸化炭素を主成分とする可燃性のガスでエネルギーにすることができます。

バイオガスに含まれる二酸化炭素および燃焼時に発生する二酸化炭素の炭素原子は，もともと製造の原料である植物が成長 する時に大気中の二酸化炭素から取り込んだものです。そのた めバイオガスは，燃焼させることで新たな二酸化炭素を大気に放出しないカーボンニュートラルのエネルギーとされています。

バイオガスは発電やボイラー燃料として利用されてきました が，輸送にはパイプライン建設が必要となることから，バイオ ガスの利用は発生場所および近隣エリアに限られてきました。

2005年9月，当社は中国の北京市環境保護科学研究院および山東十方環保能源有限公司（山東十方）からバイオガスの輸送方法につき相談を受けました。

「JAPEXが勇払油ガス田で実施している小規模LNGプラントと タンクローリー輸送をバイオガスの輸送に利用できないか？」」 いうものでした。

検討の結果，バイオガスの輸送にはLNG方式よりも圧縮天然 ガス（CNG：Compressed Natural Gas）方式の方が設備費，操業費が安く，取り扱いやすいとの結論に至りました。

当社は，山東十方と合弁会社「山東円通生物能源有限公司」を 2007年8月に設立し，山東省の2力所で商業規模でのパイロッ ト・プロジェクトを行うことに合意し，2009年3月，5月にそれ ぞれプラントの商業運転が開始されました。

バイオガスを都市ガスに使用したいとの要望があったため，都市ガス会社の原料ガス受入規格に合わせてバイオガス中の二酸化炭素を除去する必要がありました。メタン95\％以上に精製さ れたガスをBNG（Bio－Natural Gas）と呼んでいます。

本プロジェクトは次の3ステップで構成されています。
① バイオガス中の二酸化炭素を除去してBNGに精製する ②）BNGを圧縮機で20MPaに昇圧する（中圧は4MPa） ③ ボンべを搭載したトラックでBNGを消費地まで輸送する

「バイオガスの都市ガスでの利用」，「バイオガスの高圧ガス化」，「高圧ガスのトラック輸送」はそれぞれ実績がありますが， これら3つの組合せは世界でも初めての試みだと思われます。

また，20MPaの高圧ガスの一部は天然ガス自動車用の燃料 としての利用も開始されています。

中国のバイオガス発生量は100億m ${ }^{3}$／年との推計もあります。本プロジェクトはこれまで未利用だったバイオガスの有効利用 を促進する新しいモデルとして中国政府や地方政府から高く評価されています。

本プロジェクトの実施は，化石燃料起源のエネルギー消費量 の削減につながるため，クリーン開発メカニズム（CDM）プロ ジェクトとしての承認に向けた申請手続きを行っています。

香馳デンプン工場

	（1）第1プロジェクト	（2）第2プロジェクト
工場名	浮来春アルコール工場	香馳デンプン工場
場所	山東省日照市	山東省博興市
製品（原料）	工業用アルコール（イモ）	測粉•蛋白（トウモロコシ・大豆）
BNG	500 万m ${ }^{3}$ 年	160万m ${ }^{3}$ 年
操業開始	2009年5月	2009年3月
販売先： 距離•方法	都市ガス： $2.5 \mathrm{~km} \cdot \mathrm{PL}$ 都市ガス：30km・トラック CNGV：5km・トラック	都市ガス： $25 \mathrm{~km} \cdot$ トラック

高圧BNG輸送用トラック

森林整備活動

当社は，2005年度から地球温暖化の防止を図るためのCO2削減貢献策として，植林•森林整備活動を行っています。
植林地は当社の事業所のある北海道，秋田県および新潟県で実施しています。

北海道における植林

北海道においては，国有林「法人の森林（もり）」制度を活用し，「せきゆかいはつ モラップの森」（苫小牧市〈支笏湖周辺〉で約 7．6ha）として，2006年から2008年の3力年にわたり，針葉樹 （アカエゾマツ・トドマツ）約11，000本を植樹しました。今後は植樹した苗木が立派に生長するよう維持•管理を徹底し，森を蘇らせるよう努力していきます。

秋田県における植林

秋田県においては，「せきゆかいはつ ゆりの森」として鳥海山北麓の南由利原高原において，由利本荘市の市有地約4．5ha を借り受け，2005年から2007年の3力年にわたり，広葉樹（ブ ナ・コナラ・エゾヤマザクラ・ヤマモミジ等）および針葉樹（ス ギ）合計約8，000本を植樹しました。今後は植樹した苗木が立派に生長するよう維持•管理を徹底し，森を蘇らせるよう努力 していきます。
なお，こうした森林整備活動（緑化運動）に対して（社）秋田県緑化推進委員会より感謝状をいただきました。

新潟県における植林

新潟県においては，2007年度より県内の2力所において植林 を行っています。「せきゆかいはつ 縄文の森」は，県が推進す る企業貢献による地球温暖化対策としての森林整備ならびに長岡市が進める西部丘陵東地区の森林•緑化保全計画に協力する ものとして，同市が所有する長岡市西部丘陵東地区11．93ha（植樹対象地等4．91ha，付帯森林7．02ha）において広葉樹（ケヤ キ・エノキ・ナナカマド・ヤマモミジ等）約10，000本の植樹を行います。

また，「せきゆかいはつ 千年松の森」は，日本海洋石油資源開発株式会社（JPO）と共同で，県が推進する企業貢献による地球温暖化対策としての森林整備に協力するものとして，北蒲原郡聖籠町地内の県が所有する港湾施設用地約6．4haにおいて， 2007年から2009年の3力年にわたり，針葉樹（アカマツ）およ

び広葉樹（エノキ・カスミザクラ等）合計約14，800本の植樹を行いました。
3回目となる2009年の最後の植樹は，JPO従業員およびその家族により植樹を行いました。

今後は，植樹した苗木が立派に生長するよう維持管理を徹底 し， CO_{2} 削減に貢献していきます。

「せきゆかいは 千年松の森 1 植樹に参加した従業員および家族の皆さん（2009年）

当社の植林活動場所

バイオ炭素基金への参加

当社は，2005年に世界銀行のバイオ炭素基金（BioCarbon Fund）に対して250万米ドル（約2億7千万円）の支出を約束して参加しました。

同基金は，2017年までに，海外各地での新規植林•再生植林，森林保全プロジエクトを支援し，温室効果ガス排出権を獲得 していくもので，地球温暖化防止とともに，途上国の地域の共同体の発展に大きく貢献するものです。
当社は，このような取組みを通じて，海外において当社に相応しい環境•社会への貢献ができるものと考えています。アジ ア，アフリカ，中南米，東欧からの150を超えるオファーに対 し，2010年6月までに，世界銀行の組上に載っているプロジェ クトは契約交渉中のものを含めて17件あります。

これらのプロジェクトのうち，すでに次の5件は国連に登録さ

れています。
① 中国——広西珠江流域管理のための再植林プロジェクト
（2）モルドバ—土壌保全プロジェクト
③ ウガンダ—ーナル川流域の森林保護区における再植林プ ロジェクト
（4）エチオピアー同国南西部の山岳地帯における天然林復元プ ロジェクト
⑤ アルバニア－劣化した土地での再植林プロジェクト
今後，その他のプロジェクトについても，植林事業を実施する とともに，国連への登録作業を進めていく予定になっており， 2012年までに13．6万トンの排出権が当社に引き渡されるもの と見込んでいます。

国民運動への参加

当社では，地球温暖化対策として「チーム・マイナス6\％」に 2006年10月より参加登録し，地球温暖化防止に向けた取組み を推進しています。
深刻な問題となっている地球温暖化。この解決のために世界 が協力して作った京都議定書が2005年2月16日に発効しまし た。世界に約束したわが国の目標は，「2008～2012年の第一約束期間（5年間）に，温室効果ガスの排出量を1990年比で6\％ の削減」です。これを実現するための国民的プロジェクト，それ が「チーム・マイナス6\％」です。

わが国の二酸化炭素排出量を部門別にみると，産業部門から の排出量が最も多いですが，京都議定書の基準年からの変化を みると，業務その他部門•家庭部門の増加率が大きくなってい ます（左下のグラフ参照）。「チーム・マイナス6\％」は，個人の意識向上によって削減可能であり削減効果も大きい業務その他部門•家庭部門での活動が中心となっています。
当社においても，社内ニュースなどを通じて従業員に「チーム・ マイナス6\％」で推進されている6つのアクションの実行を呼び かけています。

6つのアクション
1．冷房は $28^{\circ} \mathrm{C}$ ，暖房は $20^{\circ} \mathrm{C}$ にしょう（温度調節で減らそう）
2．蛇口はこまめに閉めよう（水道の使い方で減らそう）
3．エコ製品を選んで買おう（商品の選び方で減らそう）
4．アイドリングをなくそう（自動車の使い方で減らそう）
5．過剰包装を断ろう（買い物とごみで減らそう）
6．コンセントからこまめに抜こう（電気の使い方で減らそう）

地域社会の一員として（コミュニケーション）

当社は，鉱業所，生産鉱場のある地域社会の方々と相互に交流を深め，事業活動に対する理解を促進しています。
地元自治体，企業等からの施設見学の受入れをはじめ，地元小学校の「総合的な学習」授業の一環として，施設見学を通じた職場体験の場を提供したり，高校生や大学生の就職活動の参考 として，地域産業への理解を深める見学授業の受入れや，依頼 に基づく講演会を行っています。

また，地域の祭にも積極的に参加しており，秋田県秋田市で開催される「竿燈まつり」には，提灯に会社ロゴマークの入った竿燈で参加しています。三尺玉花火の打上げで有名な新潟県長岡市で開催される「長岡まつり」にも協賛し，当社はベスビアス超大型スターマインを提供しています。

さらに，地域で開催される野球大会等へも積極的に参加して，地域社会の一員としてその役割を果たしています。

インターンシップ，社外への講師派遣

当社は国内で石油•天然ガスの探鉱，開発，生産のフィール ドを有する数少ない企業として，国内外から研修生を受け入れ てきました。

国内外の大学生，大学院生，高校生（計16名）をインターンシッ プにより受け入れ，国内の生産操業現場あるいは技術研究所に おける各種技術分野の実習や，本社における企業法務等に関す る実習を行いました。なお，実習の中には単位認定の対象と

なっているものもあります。
この他，（独）石油天然ガス・金属鉱物資源機構の技術センター で実施される海外技術者支援プログラムや石油鉱業の基礎知識 を習得するプログラム，さらに石油鉱業連盟の石油講座等へ講師を派遣し，国内外の技術者や事務部門の方々への教育に携 わっています。

自然災害への対応（社会貢献）

スマトラ島中西部パダン沖地震への支援

2009年9月30日にインドネシア・スマトラ島中西部パダン沖 で発生した地震により，同国は深刻な被害を被りました。当社は，ジャカルタ事務所を拠点に同国で事業を行っていま

すが，被災地の一日も早い復興に向け微力ながら貢献すべく，同国政府（BPMIGAS）を通じ，5万米ドルの義援金を寄贈しま した。

海外技術者研修生の受入れ

パプアニューギニア人技術者研修

当社は，パプアニューギニア国営石油会社であるPetromin PNG Holdings Ltdとの合意に基づき，2011年度以降に同国か ら技術者を招聘し，地質および物理探鉱，貯留層スタディ研修を実施することとしています。

まずは2011年4月に，PetrominよりSenior Geologist2名を当社に招いて，共同スタディを行う形で実施する予定です。

研修の前半では，同国において探鉱•開発中の特定の地質構造に関し，実際の物理探鉱デー夕の処理，解釈を最新の物理探

鉱ソフトウエアを用いて行うこととしています。また，当社の北海道鉱業所，勇払LNGプラントの見学を行い，小規模ではありなが らも，当社が自社で天然ガスの液化技術を有していることを紹介 することとしています。
研修の後半では，同構造のデータを基に，貯留層エンジニアリ ングを行うこととしています。

上記研修後もPetrominおよび同国政府の石油技術者を招聘し
て，随時当社グループで研修を継続していく予定です。

産学連携の推進

世界的なエネルギー需要の高まりが見られる中，炭化水素工 ネルギー資源の探鉱•開発技術にかかわる研究開発やエネル ギーの安全保障戦略が重要視されています。

当社では，大学における教育研究の推進，技術者育成へのサ ポート等を通してエネルギー資源開発の振興に寄与するため，大学•大学院に寄付講座を設置しています。

産学連携研究を通して，資源開発に関する先端技術やエネル ギー政策にかかわる研究を促進するとともに，エンジニアリン グデザイン能力やエネルギー政策立案にかかわる能力の習得に配慮した教育研究を行い，業界の将来を担うべき人材の育成を目指します。

開設している寄付講座

設置場所	講座名称	設置期間
東京大学大学院工学系研究科	フロンティアエネルギー 開発工学（JAPEX）寄付講座	2007年4月1日から 2012年3月31日まで
京都大学大学院工学研究科	エネルギー資源開発工学 （JAPEX）講座	2007年5月1日から 2012年3月31日まで
東北大学大学院環境科学研究科（インドネシア バンドン工科大学に東北大学分室を設置）	$\begin{aligned} & \text { エネルギー・セキュリティー } \\ & \text { 学 (JAPEX) 寄付講座 } \end{aligned}$	2008年4月1日から 2011年9月30日まで
北海道大学創成研究機構研究部	JAPEX地球エネルギー フロンティア研究部門	2009年4月1日から 2014年3月31日まで

ゼロ災運動

当社では，独自の「ゼロ災運動」を全社を挙げて展開すること で，災害撲滅を目指しています。2009年度は1件の軽傷災害（8日休業）と1件の微傷災害（2日休業）が発生しました。そのため，災害発生の指標である度数率（100万労働時間当たりのり災者

数）は1．41となりました。また，強度率（1，000労働時間当たり の労働損失日数）は0となっています。なお，第三者被害は発生 していません。

鉱山保安表彰

当社の鉱山保安活動は，社外でも高く評価されており，2009年度には全国鉱山保安表彰（団体：1鉱山，個人：2名），地方鉱

全国鉱山保安表彰 保安実績優良鉱山：見附鉱山（長岡鉱業所 見附鉱場）

全国鉱山保安表彰 保安従事者：成田 正憲（秋田鉱業所 申川鉱山 申川鉱場）

山保安表彰（個人：5名），鉱業労働災害防止協会会長表彰（事業場：1事業場，個人：5名）を受賞しました。

或 21 年度全国鉱山保安表

鉱業労働災害防止協会会長表彰 危険予知優良賞：長岡鉱業所技術部鉄工場

自主保安活動

2005年4月に施行された改正鉱山保安法では，保安に関する国の関与が大幅に縮小し，代わって事業者による自主保安活動 が保安確保の主体となりました。

自主保安の基本的な考え方は，従来の保安確保の中心であっ た国が定めた安全基準と国による保安検査ではなく，事業者自 らが危険の把握と対策の実施および見直しを行うなど，より現場の実態に即した事業者の主体的な保安確保を義務付けること により，事故•災害を防止しようとするものです。当社としても自主保安活動の重要性を認識し，継続的改善を心がけながら自主保安の強化に努めています。

当社における自主保安活動の主体は，「鉱山保安規程の順守と継続的な見直し」，「保安教育」，「リスクアセスメント」，「保安方針に基づく保安活動」および「自主保安監査」です。

1．鉱山保安規程の順守と継続的な見直し

鉱山保安法で義務付けられている鉱山保安規程を制定するこ とはもちろんですが，制定された規程は確実に順守されなけれ ばなりません。法令の要求事項は当然ですが，当社が自主的に定めた事項についても，たとえ法令の要求事項ではなくても法令と同様に順守しています。

また，設備の増設や管理システムの変更，日常の保安活動に おける見直し等により，保安規程の改訂が必要となった場合は，法令に則って保安委員会に諮り，決議を経て保安規程の改訂を行います。

このように，鉱山保安規程の確実な順守と継続的な改善を進 めることで，保安の確保に努めています。

2．保安教育

鉱山で働く人の資格要件は，旧法の鉱山保安試験制度が廃止 されたため，これまでの資格要件に代わつて，原則的に一般法 の資格が適用されることとなりました。しかし，石油•天然ガ ス鉱業に特有の採収施設や掘削施設などに関する作業監督者の資格要件は法令による規定がなくなったため，当社が独自に資格要件を設け，保安教育を施す必要があります。

当社では，保安管理者の法的•自主的資格要件，作業監督者 の法的•自主的資格要件，鉱山労働者の自主的資格要件，各種講習会および研修会への計画的参加要領など，当社が行う保安教育の基本的な事項を定め，それにしたがって社員の保安教育 を行っています。また，一般法の資格取得については教育計画 を策定し，社員の経験年数に見合った資格の取得を指導してい ます。特定の資格を取得した社員には報奨制度によりインセン ティブを与えるなどして，資格保有者の安定的な確保を目指して います。

3．リスクアセスメント

鉱山におけるリスクアセスメント（法令では現況調査）につい ては，鉱山保安法で「事業者が鉱山における保安上の危険を把握し，これに対する保安の確保措置を鉱山保安規程に反映させ る仕組みを構築する」ことが義務付けられています。

当社では，法令の要求事項である現況調査に相当するものと して「ハザード登録とリスク評価」の手順を定めて実施しています。各鉱山は，これまでゼロ災運動の一環として継続的に実施し てきたヒヤリ体験報告その他の諸活動を利用して，ハザード（災害•事故の原因または被害拡大要因）とリスク（想定される結果 の重大性と発生の可能性の関係）の評価を行い，特定されたリ スクについて個々に対策を講じ，リスクの軽減に取り組んでい ます。

4．保安方針に基づく保安活動

当社は，毎年，保安方針，保安目的を定め，それに基づく全社的な保安活動を展開しています。さらに各鉱業所と各生産鉱場等において，より具体的な保安目標，保安重点計画を策定し，現場の状況に即した効果的な保安活動を展開しています。これ らの保安活動は年度末に総括し成果を評価します。その結果を翌年の保安活動に盛り込むことで継続的に保安レベルを高めて いき，事故•災害の撲滅につなげようとする取組みです。

5．自主保安監査

鉱山保安規程の順守状況を確認するための内部監査として，各鉱山において年1回程度の自主保安監査を実施しています。

鉱山保安規程には，法令に基づき，保安管理体制，保安委員会，保安方針に基づく保安推進活動，リスクアセスメント，保安教育，災害時の対応，鉱業権者が講ずべき措置，保安措置の評価と見直し，ならびに保安記録等について規定するよう義務付けられています。自主保安監査は，これらの事項が鉱山保安規程に適正に規定されているか，また適正に運用されているか確認することを目的にしています。

監査の進め方は，社内各部署から監査員を募り，3～4名で編成した監査チームが鉱山へ赴き，鉱山の管理者ヘインタビユー をする形式をとります。 具体的には，鉱山保安規程の下位文書 および保安記録の整備状況，鉱山施設との整合性，記録の状況等が監査対象となります。リスクアセスメントについては，作

業ごとのハザード登録，ヒヤリ体験報告および事故•災害事例 その他を教訓としたリスク評価および軽減対策が講じられてい るか，対策後の残存リスクに対する評価が行われているかなど が監査対象となります。

監査報告書には鉱山保安規程から逸脱している事項（不適合， オブザベーション）と他鉱山の模範となる事項（ストロングポイ ント）が記載され，鉱山は不適合に対して是正処置を施して改善 しなければなりません。是正処置の実施状況については，監査 チームリーダーが追跡して確認します。

監査報告書は保安統括者である鉱業所長に報告される他，他 の鉱山へも水平展開し，継続的改善に役立てています。

平成22年度保安方針，保安目的

保安方針
私たちは，人間尊重の理念のもと，『安全はす べてに優先する』を基本に，全員参加で安全と健康を先取りし，災害，公害のない健康で快適 な職場睘境の形成に努めます。

保安目的
①労働災害をゼロにする
（2）公害を発生させない
（3）健康で快適な職場を作る

鉱山での自主保安監査の様子

8 労動安全衛生

緊急時対応

当社では，事業所において人員，施設，操業および販売に関 する緊急事態が発生した場合を想定して，緊急対策要領および マニュアルを制定しています。緊急事態が発生した場合は，緊急対策要領およびマニュアルにしたがって情報収集や連絡•指示を行うとともに，必要に応じて本社に「緊急対策本部，緊急対策チーム」を，各鉱業所等には「現地緊急対策本部」を設置して，対応することになっています。また，本社および各鉱業所等に おいては，緊急事態を想定した訓練を適宜（年1回以上）実施し，緊急対策要領やマニュアルの整備•改善を行っています。

緊急時対応訓練

労働組合とのコミュニケーション

労働組合とは全社的に年2回，中央保安会議を開催していま す。そこで当社で発生した事故•災害等について会社の対応を説明し，また保安に関する問題点について意見交換をしてゼロ災達成に努めています。地方でも同様の会議を年2回地方単位 で開催しています。

社員教育

当社では，これまで石油•天然ガスの探鉱，開発，生産，輸送 の実施に当たり，国内では定期的な保安教育を，また海外では必要の都度HSE（Health，Safety \＆Environment）教育を実施 し，災害や鉱害の防止に努めています。

HSE関連国内資格保有者数

資格名	保有者数
鉱山保安技術職員	238
エネルギー管理士	43
ガス主任技術者	60
高圧ガス製造保安責任者	169
危険物取扱者	711
電気主任技術者 公害防止管理者 その他の資格（鉱山施設にともなう作業関係）	30
資格保有者総数	37

障害者雇用の促進

当社の障害者雇用率は2010年3月末現在で1．65\％となって います。近年の雇用率の低下傾向に歯止めをかけるとともに，法定雇用率（ 1.8% ）への早期回復を目指して，職場環境の整備等雇用の奨励に努めていきます。

年度	2005	2006	2007	2008	2009
雇用率（\％）	1.91	1.96	1.76	1.70	1.65
（各年度3月末現在）					

9海外での環境保安への取組み

当社では，1950年代末にインドネシア，カナダ，オーストラリアなどで海外での探鉱開発事業をスタートさせました。石油•天然ガ スの事業を行うためには，いまや世界中どこにおいても非常に高い環境保安に対する配慮が求められるようになってきています。以下に，当社が子会社等を通じ主導している海外プロジェクトの環境保安への取組みをご紹介します。

コーポレートHSE（環境•安全•衛生）マネジメントシステムの導入

これまで当社が主導する海外プロジェクトにおけるHSE （Health，Safety \＆Environment）マネジメントシステムは，各プ ロジェクト会社ごとにマネジメントシステムを構築するとともに，各プロジェクト会社が独自で運営してきました。

しかし，近年，親会社が各プロジェクト会社のHSEに対し全面的に責任を負う体制が求められるようになり，親会社のHSEポ リシーに基づくHSE活動を，各プロジェクト会社で確実に実践す るのが一般的になっています。

このような状況を踏まえ，当社はHSEポリシーを策定し，そ

れを実現するためのコーポレー トHSEマネジメントシステムを構築しました。そして2010年1月1日より，このHSEマネジメン トシステムに則って，当社がオぺ レーターとなったすべての海外 プロジェクトにおいてHSEの取組みを行うこととしました。

カナダでの環境取組み

カナダオイルサンド株式会社はカナダにおいてオイルサンド の開発を行っています。カナダは豊かな自然環境を守るため厳 しい保護政策を実施していますが，同社は一般的な水質や大気汚染等の環境法令，および野生動物の生態系を守る法令にした がい，環境保全に前向きに取り組みながら操業を行っています。

カナダにおけるオイルサンド開発は従来露天掘りによるもの がほとんどでしたが，同社が採用するSAGD（Steam Assisted Gravity Drainage）法と呼ばれる新しい方法は，蒸気を地中に圧入してオイルサンド原油の流動性を高めて，これを地上から採収するものであり，広大な面積を掘り起こす露天掘りに比し て環境負荷が非常に少ない手法です。また，蒸気として使用さ れ，原油とともに回収される熱水は，廃棄することなく90\％以上を再利用しています。

オイルサンド生産プラント（アルバータ州）

操業現場周辺の森林は州政府管理下にある自然林であり，立入りや伐採を最小限に留め，環境保護に努めており，また，先住民の狩繝や果実採取等のための立入権等，地域住民への十分 な配慮を行いながら操業を行っています。

同社では今後とも周辺の自然や地域社会と調和した操業を維持し，環境への影響を最小限に留めたエネルギー開発に努力し ていきます。

カナダオイルサンド鉱区位置図

9 海外での環境保安への取組み

リビアでの環境取組み

株式会社ジャペックスリビアでは，リビア陸上のArea 176 Block 4と，海上のArea 40 Block 3\＆4の計2鉱区において， 2005年12月より探鉱事業を行っています。

同社では2006年2月，リビアの法制ならびに環境基準を順守 の上，同社としてのHSE基本理念（Company Philosophy and Basic Concept of Health，Safety and Environmental Management System）を定め，2007年度に実施した物理探鉱作業は，同基本理念に則ったHSEマニュアル（Health，Safety and Environmental Management System Manual）に基づき，環境負荷の少ない最善の作業方法を選択して行われました。同 マニュアルに基づき，陸上の物理探鉱作業では作業終了時に外部監査を受は，海上の物理探鉱作業でも事故を未然に防ぐため事前に水深調査を実施し，作業中に海洋生物を専門に監視する係員を乗船させるとともに，音響源のソフトスタートなどを行 い海洋生物，環境への影響を最小限に留めるよう努めました。

リビア鉱区位置図

インドネシアでの環境取組み

東南スラウェシ州ブトン（Buton）鉱区

東南スラウェシ州ブトン島南部に設定されたブトン鉱区は， Premier Oil（英国）およびKUFPEC（クウェート）と共同で落札 し，2007年1月にPS（Product Sharing）契約に調印して，当社が探鉱作業のオペレーターを務めています。

ブトン鉱区は陸域•海域の双方を含みますが，当社を中心と するグループが2005～2006年に実施した予備調査の結果，対象を陸域に絞り，現在は2008年に実施した二次元物理探鉱 デー夕等を活用して試掘対象構造を選定するための地質評価作業を実施しています。

海上のArea 40 Block $3 \& 4$ で は，2009年3～4月にかけて試掘1号井が，2010年5～7月に かけて試掘2号井が掘削されまし た。当該試掘の実施に当たつて は，リビアの法令に基づいて環境アセスメント調査を実施する とともに，掘削リグの検査を事前 に実施し，掘削作業のHSEマニユ

リビア陸上での掘削作業 アルを作成しました。また，掘削には環境にやさしいウォーター ベース泥水を使用し，日々の作業においても事前ミーティングを徹底することによってトラブルを未然に防ぎ，周辺海域への影響を最小限に留めるよう努めました。

陸上のArea 176 Block 4においても，2009年7～9月にか けて試掘 1 号井の掘削を実施し，海上鉱区と同様の対応を取っ ています。

同社のHSE組織•責任体制としては，トリポリ所長自らが責任区分を定め運営に当たつています。

リビアでのジャッキアップリグ

ブトン鉱区位置図

ブトン島南東部Sampolawa地区のサンゴ礁

物理探鉱の測線浮かぶサンゴ礁に囲まれた美しい島で す。西隣のムナ島との間のブトン海峡が西風から守られ波穏やかなことから， 17世紀には交易の拠点として栄え，最大の街バウバウにはその当時の王国の城砦が残っています。また，島の南部を中心に1920年代から，天然のアスファ ルトの採掘が行われてきた歴史を持ち ます。現在は農林業が主な産業であり，島の外周に沿って主食となる米，キャツ サバや，カカオ，カシューナッツといっ た商品作物が栽培されていますが，急峻な地形のために内陸部には天然の森林が残されており，Lambusango地区

ブトン島は，スラウェシ本島の南東に には6万ha以上の保護区域が設定され，開発が厳しく制限されています。

地球規模での環境保全の声の高まりとともに，インドネシアに おける石油探鉱においても，近年は環境への配慮が必須となっ ており，物理探鉱や試掘といった探鉱作業をはじめる前にまず環境影響評価を行い，環境負荷を最小限に抑えるためのガイド ラインを含めた報告書の提出が求められています。また，作業終了後は植生などの回復状況を把握するために現地調査を行い，報告書を提出しています。それらの監督の下，当社としても環境 への配慮を最大限に払いながら探鉱作業を進めていきます。

東ジャワ海域カンゲアン（Kangean）鉱区

当社は2007年5月に，東ジャワ海域のカンゲアン鉱区に ファームインし，エネルギーメガプルサダ社（インドネシア）お よび三菱商事株式会社と共同で権益を保有し，当社と三菱商事

株式会社が実質的にオペレーターとして操業しています。
同鉱区では，現在Pagerunganガス田から生産操業を行って いますが，並行してTSBガス田およびPUO油田の開発作業，な らびにSepanjang油田の追加開発作業を実施しています。

カングアン鉱区はジャワ海に位置し，鉱区内にはいくつかの島々と数多くのサンゴ礁があり，とても透明度の高い美しい海に囲まれています。

操業に当たつては，監督官庁の監督の下，事前に行った環境影響評価に基づき環境負荷を最小限に抑えるよう配慮しながら作業を進めており，環境庁から関連法令を順守していることを意味する「Rating」を受けています。

具体的には，周辺の環境を維持するためにマングローブの植林，サンゴ礁の定期的観測および掘削時に発生するザクの無害化を図るバイオレメディエーションなどの環境対策に力を入れ取り組んでいます。

また，ジャカルタ本社および生産現場においてHSEマニュア ルを整備し，恒常的なミーティングおよびトレーニング実施に より，従業員に対しHSEの重要性を徹底することで操業時の環境対策，従業員の安全性の確保に細心の注意を払っています。 その結果Pagerunganガス田については，1990年1月から現在 まで約20年間，労働時間19万時間超にわたり連続無事故で操業を継続し，労働省や東ジャワ州政府から表彰を受けるなど， その安全に対する取組みが高く評価されています。また，2005年からISO14001を取得しています。

今後も引き続き環境への配慮を最大限に払うとともに，操業 の安全を保ちながら各油ガス田の生産および開発作業を進めて いきます。また，地域貢献への取組みを継続していきます。

カングアン鉱区位置図

環境デー夕（2009年度）

事業活動にともなう環境影響

資源使用量

エネルギー使用量

生産鉱場や事務所における電気・ガス（生産鉱場ではほとんど が自家消費ガス）使用，探鉱•掘削作業現場における燃料油使用が大きな要素です。

部門別エネルギー使用量
（TJ）

	電 気	気体燃料	液体燃料	合 計
事務所	38.4	7.5	9.3	55.2
探鉱部門	0.0	0.0	4.0	4.0
掘削部門	0.0	0.0	213.2	213.2
生産部門	359.3	1，911．1	20.0	2，290．4
輸送部門	80.3	603.5	0.1	683.9
	478.0	2，522．1	246.6	
	（1）エネリキー頨银：3，246．7 TJ			

水資源使用量

事業活動にともない，各種水資源を使用しています。工業用水や上水の多くは，掘削作業現場の掘削流体や生産鉱場の油ガ ス処理設備で使用されており，また地下水は，冬期間の融雪の ために多く利用されています。

部門別水資源使用量

	上水	工業用水	地下水。河川水	合 計
事務所	22，327	0	1，560	23，887
探鉱部門	0	0	0	0
掘削部門	7，092	7，998	24，773	39，863
生産部門	58，710	392，613	212，677	664，000
輸送部門	1，222	0	0	1，222
	89，351	400，611	239，010	
	（2）水坆源：728，972 k			

環境負荷物質の排出量

温室効果ガスの排出

温室効果ガスの排出量や排出源の分類等は，地球温暖化対策 の推進に関する法律（温対法）にしたがって算定しました。 購入電力，燃料油などのエネルギーの使用にともない発生する温室効果ガスは，温対法で定められた排出係数を使用して算定して います。気体燃料の使用にともない発生する温室効果ガス，BTX

部門別温室効果ガス排出量	$\left(\mathrm{t}-\mathrm{CO}_{2}\right)$
事 務 所	2,728
探鉱部門	276
掘削部門	14,646
生産部門	238,669
輸送部門	46,195
（3）温室効果ガス：302，514 t－CO2	

※輸送には，原油輸送，輸送代替のLNG製造，およびパイプラインエ事にともなう天然がスの放散等を含みます

除去装置および生産施設の維持管理にともなう放散により発生 した温室効果ガスは，ガス成分などの実測値に基づき算定して います。なお，温対法に定められていない，原油輸送などにとも ない排出される温室効果ガスなどは，IPCC（国連気候変動に関 する政府間パネル）ガイドラインに基づき算定しました。

排出源別温室効果ガス排出量
（t－CO2）

エネルギー起源	電力	26,075
	気体燃料	134,433
	液体燃料	16,939
非エネルギー起源	処理にともなって排出＊1	33,541
	生産にともなって排出＊2	80,997
	輸送部門＊3	10,529
合 計		302,514

＊ 1 天然ガス中に含まれる炭酸ガスの分離除去等の処理にともなって排出される温室効果ガス
＊2 生産施設の維持管理や生産テストにともなって排出される温室効果ガス
＊ 3 パイプライン切替え工事などにともなって排出される温室効果ガス

PRTR対象物質の排出（届出量）

PRTR（化学物質排出移動量届出制度）対象物質であるベンゼ ン，トルエン，キシレンの総排出量は，2001年度と比較して89\％ の大幅削減を達成しています。

PRTR対象物質の届出量
（kg）

ベンゼン	トルエン	キシレン
11,052	3,484	787

廃棄物等の排出量

部門別廃莗物および廃水の排出量

	廃棄物		廃 水（kも）			
	一般廃棄物	産業廃棄物	下 水	坑水還元	地層圧入	放流•蒸発
事務 所	207	1，424	22，327	0	0	1，560
探鉱部門	0	0	0	0	0	0
掘削部門	0	13，868	0	2，863	6，548	32，197
生産部門	9	2，638	50，707	268，639	0	623，625
輸送部門	0	0	1，222	0	0	0
合 計	216	17，930	74，256	271，502	6，548	657，382
	（4）噔短物：18，146 t		（5）廃水：1，009，688 kl			

石油資源開発株式会社 2010 環境報告書への所感

JAPEXの2010環境報告書を一読して感じることは，同社のす べての事業活動（探鉱•掘削，生産，輸送，さらに海外）におけ る環境とのかかわりが極めてわかりやすく，丁寧に説明されてい るという点です。記述の順序も会社概要に始まり事業活動と環境負荷，環境に関する基本的な考え，地球温暖化対策等スム一 スに読み進められるように工夫され，最後に環境データがまと めて公表されている点は読者の立場に立ったものと評価できま す。内容としては環境に関する基本的な考え方がしっかりしてい る印象を受けました。特に環境情報統合管理システムのような地味な取組みは大切だと思います。

もう1点「正直さ」も感じました。具体的には温室効果ガスの排出増，VOC排出増，さらに健康被害状況と会社の対応などの記述です。正直な情報開示はJAPEXの自信を表すもので，会社 の信頼性を高めます。

地球温暖化問題は最重点課題のひとつですが，そのことは社長挨拶をはじめ至るところから読みとれます。とはいえ温室効果 ガスの排出量が昨年に引き続き増加しています。この原因として， 2008年度は北海道地区における天然ガスの需要増および増産 に伴うエネルギー消費増などと説明されていましたが，2009年度については勇払油ガス田の第2プラントの本格稼働などとされ ています。しかし原単位も悪化しています。この辺りはもう少し

数値を挙げて原因を説明して頂けると助かります。
経団連の自主行動計画との関係ですが，昨年のこの欄での指摘に応え，世界銀行のバイオ炭素基金からの排出権獲得の数値 を示すことで目標達成の見通しが明確になった点を評価したい と思います。反面，業界平均目標が原単位 20% 削減であるのに対してJAPEXは個別事情を勘案して10\％とされています。この場合でも業界全体として 20% 達成が可能かどうかについては一言説明がほしいところです。私は日頃経済界に対して世界最高効率のコミットメントを要請しています。勿論海外との比較はバウ ンダリーもあって難しい点は承知をしていますが，ぜひJAPEXで もこの点を目標として掲げて頂きたいと思います。

JAPEXは石油•天然ガス開発を主とする企業ですが，地熱，メ タンハイドレート，バイオガスへの取組みと，正に総合エネル ギー企業になりつつあるように思えます。これにJAPEXがリード するCCSを加え，経済・エネルギー安定供給•環境の面で一層 の活躍を期待したいと思います。

CCSについては昨年も書きましたが，責任主体，責任原理，責任限度額など，技術に加えて法制面の整備の必要性に関する政府への㗢きかけについても中心的な役割を担って頂きたいと思います。

お問い合わせ先
石油資源開発株式会社
環境•新技術事業推進本部
〒100－0005東京都千代田区丸の内一丁目7番12号

[^0]: ＊ 1 鉱山保安法，大気汚染防止法および電気事業法に基づく，ばい煙発生施設なと
 ＊2 基準値は大気汚染防止法施行規則による
 ＊3 日本海洋石油資源開発（株）

